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Abstract
The static and dynamic properties of liquid Si at high pressure have been
studied using the orbital-free ab initio molecular dynamics method. Four
thermodynamic states at pressures of 4, 8, 14 and 24 GPa are considered, for
which x-ray scattering data are available. The calculated static structure shows
qualitative agreement with the available experimental data. We analyse the
remarkable structural changes occurring between 8 and 14 GPa along with their
effect on several dynamic properties.

1. Introduction

The intriguing properties of silicon along with its technological importance have stimulated
intensive theoretical [1–9] and experimental [10–16] work. Its high-density forms include
the semiconducting and covalent crystalline and amorphous phases and the metallic liquid
phase. Upon melting it undergoes a semiconductor–metal transition, a density increase of
≈10% and significant changes in the local structure which evolves from an open one, with a
tetrahedral fourfold coordination, to a liquid structure with approximately sixfold coordination.
In crystalline Si (c-Si) the semiconducting diamond structure contracts with pressure and
transforms at 12 GPa [17] to the metallic white-tin structure and then to the metallic simple
hexagonal structure at 16 GPa [18]. The local structure of liquid Si (l-Si) at the triple point
(TP) is somewhat similar to high-pressure forms of c-Si, and it has been suggested that l-Si
might consist of a mixture of diamond-type and white-tin-type structures with the proportion
of the latter increasing with pressure.

Within this backdrop, Funamori and Tsuji [16] have recently carried out x-ray (XR)
diffraction experiments to determine the static structure of l-Si at pressures of 4, 8, 14 and
23 GPa and temperatures about 50 K above the melting point at that pressure. From an analysis
of the static structure factors S(q) and the associated pair distribution functions g(r), Funamori
and Tsuji [16] concluded that l-Si up to 8 GPa has a local structure intermediate between the
diamond type and the white-tin type. But, between 8 and 14 GPa drastic structural changes were
noted, with l-Si transforming to a denser structure similar to that of l-Sn at ambient pressure,
as evinced by the strong similarities between the S(q) values of l-Sn and l-Si at 14 GPa.
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Prompted by these experimental developments, we have performed an ab initio molecular
dynamics (AIMD) study of several static and dynamic properties of compressed l-Si at the
thermodynamic states addressed by Funamori and Tsuji [16]. Of particular interest is the
reflection of the reported structural changes in the dynamic properties. Our AIMD method
is based on density functional theory (DFT) [19] which, for given nuclear positions, allows
the calculation of the ground state electronic energy and yields the forces on the nuclei via the
Hellmann–Feynman theorem, enabling MD simulations in which the nuclear positions evolve
according to classical mechanics, whereas the electronic subsystem follows adiabatically. Most
AIMD methods are based on the Kohn–Sham (KS) form of DFT (KS-AIMD methods) which
treats the electron kinetic energy exactly, but which at present poses heavy computational
demands, limiting the size of the systems to be studied as well as the simulation times. Some of
these constraints can be relaxed by the so-called orbital-free ab initio molecular dynamics (OF-
AIMD) method, which approximates the electron kinetic energy but disposes of the electronic
orbitals of the KS formulation. The method allows simulations in which the number of variables
describing the electronic state is greatly reduced so that larger samples (several hundreds of
particles) can be studied for longer simulation times (tens of ps).

Theoretical studies of l-Si have mainly focused on static structural properties for
thermodynamic states near the TP. Most studies were classical MD simulations using
effective interatomic potentials constructed either empirically by fitting to experimental
data [1, 2] or derived from some approximate theoretical model [3–5]. Recently, KS-AIMD
calculations [6–8] have been reported which address electronic and static properties. Stich
et al [6] and Chelikowsky et al [8] have reported KS-AIMD calculations for l-Si for 64
particles, using non-local pseudopotentials and the local density approximation. A subsequent
calculation [7] used 350 particles and an improved treatment of electron exchange and
correlation. Recently, we have carried out an OF-AIMD simulation [9] for l-Si near the TP for
2000 particles using a first principles local pseudopotential. Both static and dynamic properties
were calculated with results in good agreement with the available experimental data, supporting
the validity of the OF-AIMD for treating systems such as l-Si which show some remnants of
covalent bonding and are not fully metallic.

On the experimental side, besides the aforementioned XR experiments of Funamori and
Tsuji [16], we also quote the availability of both neutron scattering (NS) [10] and x-ray
(XR) [11–13] diffraction data as well as the recent inelastic x-ray scattering (IXS) data of
Hosokawa et al [14, 15] which have provided information on the dynamic structure of l-Si near
TP.

In the next section the orbital-free ab initio molecular dynamics (OF-AIMD) scheme
is described briefly, with emphasis on the electronic kinetic energy functional and the local
pseudopotential used to characterize the electron–ion interaction. In section 3 the results of the
ab initio simulations for several static and dynamic properties are presented and compared
with the available experimental data. Finally, conclusions are drawn and ideas for further
improvements are suggested.

2. Theory

The OF-AIMD method used in this study is described fully in earlier work [20], and has
previously been used to study l-Si near the TP [9]. In summary, an explicit density functional
for the electronic energy is minimized iteratively for each ion configuration, the forces on the
ions are found using the Hellman–Feynman theorem, and the ion positions and velocities are
updated by solving Newton’s equations. The approximate electron kinetic energy functional
which correctly gives the Thomas–Fermi and linear response limits is based on the von
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Table 1. Input data for the different thermodynamic states studied in this work. ρi is the total ionic
number density and T is the temperature, which have been taken from [16].

P (GPa) ρi (Å
−3

) T (K)

4 0.058 1503
8 0.060 1253

14 0.067 1093
23 0.071 1270

Weizsäcker term plus a correction which uses an averaged density [20]. The local electron–
ion pseudopotential was constructed, for each thermodynamic state, according to the procedure
described in [20].

Simulations have been performed for l-Si in the four thermodynamic states listed in
table 1. These correspond to pressures of 4, 8, 14 and 23 GPa and temperatures about 50 K
above the melting point for each pressure [16]. Each simulation used 2000 ions in a cubic
cell with periodic boundary conditions and size appropriate for the ionic number density, ρi .
The square root of the electron density was expanded in plane waves up to a cutoff energy
ECut = 15.75 Ryd. The Verlet leapfrog algorithm with a timestep of 3.5 × 10−3 ps was used
to update the ion positions and velocities. Equilibration lasted 10 ps and the calculation of
properties was made averaging over a further 65 ps. For comparison, we mention that the
KS-AIMD simulations for l-Si near the TP lasted 1.2 ps [6], 0.9 ps [7] and 1.0 ps [8], which
precludes its application to the study of most dynamical properties.

Several liquid static properties were evaluated during the simulation (pair distribution
function, static structure factor and bond angle distribution), as well as various dynamic
properties, both single-particle ones (velocity autocorrelation function, mean square
displacement) and collective ones (intermediate scattering functions, dynamic structure factors,
longitudinal and transverse currents). The calculation of the time correlation functions (CFs)
was performed by taking time origins every five time steps. Several CFs are also dependent on
the wavevector q ≡ |q|.

3. Results

3.1. Static properties

The simulations yield directly the pair distribution function, g(r), and the static structure factor
S(q). Figure 1 shows the calculated S(q) along with the corresponding XR data of Funamori
and Tsuji [16]. The experimental S(q) show changes with increased pressure. The main peak
grows in intensity and its position (qp) increases monotonically, whereas the position of the
second peak decreases between 8 and 14 GPa; the distinctive shoulder at the high-q side
of the main peak shrinks smoothly and practically vanishes at 23 GPa. These changes are
also reflected in g(r). The position of the main peak (rp), identified with the average nearest
neighbour distance, decreases with pressure except for an increase between 8 and 14 GPa; the
position of the second peak decreases monotonically with pressure.

These features are displayed qualitatively in the calculated S(q) and g(r) although there
are some quantitative discrepancies with the experimental data. Figure 1 shows that the
OF-AIMD S(q) overestimate the intensity of the main peak and slightly underestimate the
shoulder. Otherwise the positions of the peaks as well as the amplitudes of the subsequent
oscillations are accounted for fairly well. A more detailed comparison with experiment is
provided in table 2, which summarizes most of this structural information. This agreement
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Figure 1. Static structure factor of l-Si at different high pressures. Full circles: experimental x-ray
diffraction data [16]. Continuous line: OF-AIMD simulations.

Table 2. Calculated values of qp (Å
−1

), rp (Å), rm (Å) and coordination number (CN), for the
different states. The numbers in parentheses are the corresponding experimental data from [16].

P (GPa) qp rp rm CN CNa

4 2.61 (2.67) 2.52 (2.46) 3.03 6.6 (6.8) 6.9
8 2.65 (2.72) 2.50 (2.42) 3.07 7.2 (7.1) 7.3

14 2.78 (2.82) 2.51 (2.46) 3.20 9.6 (8.5) 8.9
23 2.84 (2.88) 2.47 (2.43) 3.28 11.0 (9.2) 9.5

a Calculated by integrating the RDF up to rm = 3.1 Å.

with experiment is similar to that achieved in earlier orbital-free simulations [9] and in KS-
AIMD [6–8] calculations performed for l-Si near the TP.

Based on their experimental data for S(q) and g(r), Funamori and Tsuji [16] have argued
that l-Si undergoes a high-pressure structural transformation between 8 and 14 GPa. Whereas
l-Si contracts with pressure up to at least 8 GPa by reducing the bond length, as measured by
rp, the increase in rp between 8 and 14 GPa suggests a structural change with an increase in the
coordination number (CN). An estimate of the CN may be obtained by integrating the radial
distribution function (RDF), 4πr 2ρi g(r), up to the position of the first minimum, rm, in the
RDF [21, 22]. The results from the calculated RDF in table 2 show that the CN grows with
compression but with an abrupt increase from 8 to 14 GPa. Funamori and Tsuji [16] obtained
CN values, also given in table 2, by integrating their experimental RDF up to 3.1 Å for all the
states, and a similar growth between 8 and 14 GPa is seen. Had we used the same rm = 3.1 Å
as Funamori and Tsuji did for calculating the CN, then the agreement with the ‘experimental’
values would have been even better, but taking rm as the position of the first minimum is thought
to be more soundly based.

Values for the isothermal compressibility, κT , have been obtained from S(0) = ρi kBTκT

by using a least-squares fit to calculate the S(q) for q-values up to 0.8 Å
−1

and extrapolating
to q → 0. The results are given in table 3. Although no experimental results are available,
the OF-AIMD calculation for l-Si near the TP yielded κT = 3.0, which is rather close to the
experimental value [23] of 2.8 (in 10−11 m2 Nw−1 units).
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Figure 2. Bond-angle distribution function, g3(θ, rm), of l-Si at different high pressures (full line).
The dotted and dashed lines stand respectively for l-Si and l-Al at their respective TPs.

Table 3. Calculated values of S(q → 0), isothermal compressibility κT (in 10−11 m2 Nw−1 units)
and adiabatic sound velocity (cs) for the different states.

P (GPa) S(q → 0) κT (10−11 m2 Nw−1) cs (m s−1)

4 0.0180 ± 0.003 1.50 ± 0.3 5100
8 0.0135 ± 0.003 1.30 ± 0.3 5400

14 0.0095 ± 0.003 0.94 ± 0.3 6300
23 0.0085 ± 0.003 0.68 ± 0.3 6750

Further structural information is provided by higher-order correlation functions such as the
bond-angle distribution function, g3(θ, rm), where θ is the angle between two vectors joining a
reference particle with two neighbouring particles at a distance less than rm. In a simple liquid
metal such as Al, g3(θ, rm) has peaks at around θ ≈ 60◦ and 120◦, which are close to those
expected for a local icosahedral arrangement [24] (θ ≈ 63.5◦ and 116.5◦). In contrast, for l-Si
near the TP both the OF-AIMD [9] and KS-AIMD [6–8] calculations for g3(θ, rm) have yielded
two maxima centred around θ ≈ 60◦ and 89◦. This double-peak feature has been interpreted as
a manifestation of tetrahedral bonding and higher coordinated atoms both contributing to the
first coordination shell. In illustration, figure 2 shows the OF-AIMD results for the g3(θ, rm)

of l-Si and l-Al near their TPs [9, 20]. OF-AIMD results for compressed l-Si are also included
in the figure, and a gradual evolution with pressure towards the simple liquid metal distribution
is seen. There is little change up to 8 GPa although the wide maximum at θ ≈ 89◦ has moved
to slightly smaller θ -values, which may indicate less tetrahedral bonding. But, as the pressure
increases from 8 to 14 GPa, there is a qualitative change in g3(θ, rm), whose shape moves closer
to that of the simple liquid metals, and at 23 GPa the positions of the maxima for l-Si and l-Al
are rather similar.

3.2. Dynamic properties

3.2.1. Collective dynamics. The intermediate scattering function, F(q, t), contains both
spatial and temporal information on the collective dynamics of density fluctuations. It is defined
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Figure 3. Dynamic structure factor S(q, ω) at several q-values (in Å
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units), for l-Si at 8 GPa.

as

F(q, t) = 1

N

〈(
N∑

m=1

e−i�q �Rm(t+t0)

)(
N∑

l=1

ei�q �Rl(t0)

)〉
. (1)

Its frequency spectrum is the dynamic structure factor, S(q, ω), which has experimental
relevance due to its connection with the scattered intensity in inelastic x-ray or neutron
experiments. The calculated F(q, t) for compressed l-Si exhibit an oscillatory behaviour up
to q ≈ (3/5)qp, with the amplitude diminishing for larger q-values. This oscillatory behaviour
is typical of simple liquid metals found by either computer simulation [20, 25–27] or from
theoretical models [28], and gives rise to a well-defined inelastic peak in S(q, ω).

The S(q, ω), obtained by a time Fourier transform (FT) of F(q, t), exhibit, for all the
states, well-defined sidepeaks which are indicative of collective density excitations. This is
illustrated in figure 3, which shows calculated S(q, ω) for l-Si at 8 GPa for several q-values.
The general shape of S(q, ω) is qualitatively similar at equivalent q/qp-values for all the
compressed states, and no specific feature of S(q, ω) has been identified whose variation would
mark the structural transformation occurring somewhere between 8 and 14 GPa.

For all the states the sidepeaks in S(q, ω) persist up to q ≈ (3/5)qp, which is a feature
shared by both l-Si [9] and the simple liquid metals near their TPs [20, 24]. The dispersion
relations, ωm(q), of the density fluctuations have been obtained from the positions of these
sidepeaks. They are plotted in figure 4 for the 8, 14 and 23 GPa states together with the
calculated OF-AIMD [9] results and experimental data [14] for l-Si near its TP. The curves
look qualitatively similar but there is a marked difference between ωm(q) for 8 GPa and less,
and those for 14 and 23 GPa. In addition, the slope of the dispersion gives a q-dependent
adiabatic sound velocity, cs(q), which in the limit q → 0 reduces to the bulk adiabatic sound
velocity, cs. This has been estimated by fitting a straight line to the low-q region of the ωm(q),
and the results are given in table 3. The cs increase with pressure but a steeper rise from 8 to
14 GPa will be seen.

The transverse current correlation function, Jt(q, t), provides information on shear modes
and is not directly related to any measurable quantity. It can only be obtained from either
theoretical models or computer simulations, but it is known that its shape evolves from a
Gaussian, in both q and t , at the free particle (q → ∞) limit, towards a Gaussian in q and
an exponential in t in the hydrodynamic limit (q → 0), i.e.,

Jt(q → 0, t) = 1

βm
e−q2η|t|/mρi , (2)
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Figure 4. Dispersion relation for the peak positions, ωm(q), from the calculated S(q, ω), for l-Si at
different high pressures. The figure also includes the calculated (open circles) [9] and experimental
(asterisks) [14] results for l-Si near the triple point (T = 1740 K). Dashed line: linear dispersion
with the hydrodynamic sound velocity, v = 3977 m s−1, at the triple point.

where η is the shear viscosity coefficient, β = (kBT )−1 and m is the atomic mass. In both
small and large q limits, Jt(q, t) is always positive, but for intermediate q-values there is a
more complicated behaviour with well-defined oscillations [20, 24, 29]. Calculated Jt(q, t)
for several q-values are shown in figures 5 and 6 for l-Si at 8 and 14 GPa respectively. The
most noteworthy effect on Jt(q, t) of an increasing pressure is reflected in the oscillations,
which have a smaller amplitude and last for appreciably shorter times at the lower pressures.
Its consequences are apparent in the frequency spectra, Jt(q, ω), which are plotted in the lower
panels of figures 5 and 6. For both 14 and 23 GPa the Jt(q, ω) exhibits an inelastic peak which
appears at low q-values (≈0.45 Å

−1
) and persists up to about q = 2.50 Å

−1
. However, for

8 GPa the inelastic peaks appear for a appreciably smaller range (0.85 Å
−1 � q � 1.50 Å

−1
)

while for 4 GPa there are no inelastic peaks. This absence of peaks in Jt(q, ω) is also a
feature of l-Si near the TP, but is at variance with the behaviour of a large number of different
liquids such as hard sphere systems [29], Lennard-Jones liquids [24, 29] and simple liquid
metals [20, 24, 27] near melting, for which Jt(q, t) oscillates and the associated Jt(q, ω), has
an inelastic peak over some range of q-values. The inelastic peak in Jt(q, ω) is associated
with propagating shear waves which seem to be absent in l-Si up to somewhere between 4 and
8 GPa. However, it must be noted that whereas in simple liquid metals near melting the shear
waves last up to q ≈ 3qp, in the case of l-Si at 14 and 23 GPa they appear up to q ≈ 0.9qp.

The shear viscosity coefficient, η, can be calculated from Jt(q, t) using the memory
function representation [20, 30, 31]

J̃t(q, z) = 1

βm

[
z + q2

ρi m
η̃(q, z)

]−1

, (3)

where the tilde denotes the Laplace transform, and η̃(q, z) is a generalized shear viscosity
coefficient. The

∫ ∞
0 dt Jt(q, t) when normalized gives βm J̃t(q, z = 0), from which η̃(q, z =

0) are obtained and extrapolated to q = 0 to give the usual shear viscosity coefficient, η.
Results are given in table 4. Although no comparison can be made with experimental results,
the calculated values are considered reliable because the application of this approach to l-Si near
its TP gave η = 0.75 ± 0.15 GPa ps, in reasonable agreement with the available experimental
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Figure 5. (a) Transverse current correlation function Jt(q, t) at several q-values (in Å
−1

units), for
l-Si at 8 GPa. (b) The same for Jt(q, ω).

data [32], ηexp = 0.58–0.78 GPa ps. It is noteworthy that once more η undergoes an abrupt
change as the pressure increases from 8 to 14 GPa.

3.2.2. Single-particle dynamics. Information about the single-particle properties is contained
in the self-intermediate scattering function

Fs(q, t) = 1

N

〈 N∑
j=1

e−i�q �R j (t+t0)ei�q �R j (t0)

〉
(4)

and its frequency spectrum, the self-dynamic structure factor, Ss(q, ω), which is related to the
incoherent part of the total intensity scattered in an INS experiment. The OF-AIMD results for
the Fs(q, t) presented in figure 7 for two states display the usual monotonic decay with time,
and comparison of different states shows that at similar q/qp-values Fs(q, t) decays slower
with increasing pressure, with the 14 and 23 GPa states behaving very much like the liquid
simple metals [20, 24, 28] near their TPs. The different rates of decay can be related to the
differences in the self-diffusion coefficients.

Closely related to Fs(q, t) is the velocity autocorrelation function (VACF) of a tagged ion
in the fluid, Z(t), which can be obtained as the q → 0 limit of the first-order memory function
of the Fs(q, t), but more conveniently, from its definition

Z(t) = 〈�v1(t)�v1(0)〉/〈v2
1〉. (5)
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Figure 7. Self intermediate scattering functions, Fs(q, t), at several q-values (in Å
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units), for
l-Si at (a) 8 GPa and (b) 14 GPa. The key for the symbols is the same as in the previous figure.

Figures 8 and 9 show results for Z(t) and for its power spectrum Z(ω). The overall shape of
Z(t) changes little from the TP up to 8 GPa, but as the pressure is further increased changes
occur in the range and amplitude of the oscillations until at 23 GPa the shape is very similar
to that of the simple liquid metals at their TPs. These changes can be explained in terms of
the so-called ‘cage’ effect due to backscattering from the shell of nearest neighbours reversing
the initial velocity of a tagged ion and driving a deeper first minimum. This is consistent with
the results for the static structure, summarized in table 2, which shows an open structure up to
8 GPa but a marked increase in the coordination number at higher pressures.
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Table 4. Calculated values of the self-diffusion (D) and shear viscosity η (in GPa ps) for the
different states.

P (GPa) D (Å
2

ps−1) η (GPa ps)

4 1.82 ± 0.05 0.77 ± 0.10
8 1.33 ± 0.05 0.84 ± 0.10

14 0.70 ± 0.03 1.47 ± 0.15
23 0.70 ± 0.03 1.55 ± 0.15

The power spectra which are plotted in figure 9 also show significant changes between 8
and 14 GPa. Z(ω) evolves with pressure from a shape resembling l-Si near the TP towards
a liquid simple metal shape with a low-frequency peak and a higher-frequency peak (or
shoulder) [20, 24]. The shoulder at ω ≈ 40 ps−1, present at all the pressures, has been related
to vibrational remnants in the liquid of the covalent bonding [6]. Below 8 GPa, low-frequency
diffusive modes are present.

The self-diffusion coefficient, D, is readily obtained from either the time integral of Z(t)
or from the slope of the mean square displacement δR2(t) ≡ 〈| �R1(t) − �R1(0)|2〉 of a tagged
ion in the fluid, as follows:

D = 1

βm

∫ ∞

0
Z(t) dt; D = lim

t→∞ δR2(t)/6t . (6)

Both routes for D lead to practically the same value, and the results are given in table 4.
The decreasing value of D with increasing pressure is due to the growing importance of
backscattering. No experimental results are available for the diffusion coefficients of l-Si, but
confidence in the results may be taken from the agreement between the OF-AIMD result for l-Si
near the TP: DOF-AIMD = 2.28 Å

2
ps−1, and the estimates from KS-AIMD calculations of Stich

et al [6, 7]: DKS-AIMD = 2.02 Å
2

ps−1 [6] which slightly increased to 2.4 Å
2

ps−1 [7] when the
number of particles was augmented to 350 particles. Another KS-AIMD study by Chelikowsky
et al [8] has yielded DKS-AIMD = 1.90 Å

2
ps−1. The results for D at 4 and 8 GPa are similar to

the value at the l-Si TP, whereas the results for 14 and 23 GPa are closer to those for the liquid
simple metals near their TPs [20, 33, 34]. This change in D with pressure explains the different
decay rates found in the Fs(q, t) which decayed much faster at the lower pressures. Recalling
the accurate Gaussian approximation [24, 29], Fs(q, t) = exp[−q2δR2(t)/6], it will be seen
that a greater D implies a greater δR2(t) and therefore a faster decay of Fs(q, t).

The self-diffusion coefficient, D, of a macroscopic particle of diameter d undergoing
Brownian motion in a liquid of viscosity η is related to η through the Stokes–Einstein (SE)
relation ηD = kBT/2πd . This relation has often been used on an atomic scale to estimate η

by identifying d with the position, rp, of the main peak in g(r). Using the D values for 4, 8, 14
and 23 GPa the relation yields η = 0.72, 0.82, 1.36 and 1.59 GPa ps respectively, values rather
close to the earlier OF-AIMD estimates.

Gaskell and Miller [35] have used mode-coupling (MC) theory to develop a representation
of the normalized VACF which has been used to interpret MD data in various fluids [35–37],
and which sheds light on l-Si. Within this approach

Z(t) ≈ 1

24π3

∫
dq f (q)[Jl(q, t) + 2Jt(q, t)]Fs(q, t) ≡ Z l(t) + Z t(t) (7)

where Jl(q, t) and Jt(q, t) are the normalized longitudinal and transverse current correlation
functions and f (q) is

f (q) = 3

ρi

j1(aq)

aq
(8)
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Figure 8. Full line: normalized velocity autocorrelation function Z(t) for l-Si at different pressures.
The dashed and dash–dotted lines stand for the respective longitudinal, Z l(t), and transverse, Z t(t),
components as defined in equation (7). The dotted line depicts the result for l-Si at the triple point
(T = 1740 K).
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Figure 9. Power spectrum, Z(ω), for l-Si at different pressures. The dashed and dash–dotted lines
stand for the respective longitudinal, Z l(ω), and transverse, Z t(ω), components. The dotted line
depicts the result for l-Si at the triple point (T = 1740 K).

with j1(x) the spherical Bessel function of order one; ρi is the ion number density and
a = (3/4πρi)

1/3 is the radius per ion. Substitution into equation (7) of the OF-AIMD results
for Jl(q, t), Jt(q, t) and Fs(q, t) allows identification of longitudinal and transverse current
contributions, Z l(t) and Z t(t), respectively. The two contributions are plotted in figure 8 which
shows that the oscillatory behaviour in the Z(t) is due to Z l(t), but again the step from 8 to
14 GPa changes the shape of both contributions. Up to 8 GPa, Z t(t) remains positive for all
times as a result of the positive nature of Jt(q, t) (see figures 5 and 6) and determines the long
time behaviour of the Z(t); however, from 14 GPa on, Z t(t) develops a shallow and broad
negative minimum centred at rather long times ≈0.15 ps. On the other hand, Z l(t) accounts for
most of the backscattering effect. With higher pressure the first minimum sharpens and moves
to shorter times and the oscillations extend further, which are results of the increasing role of
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Figure 10. Normalized HWHM of Ss(q, ω), relative to its value at the hydrodynamic limit, for l-Si
at 8 and 14 GPa. Continuous line: OF-AIMD results. Asterisks: mode-coupling theory. Dashed
line: free-particle limit.

0 5
0

1

2

Σ(
q)

0 5 10

q (Å
-1

)

8 GPa 14 GPa

Figure 11. Same as figure 10, but for the normalized peak value Ss(q, ω = 0), relative to its value
at the hydrodynamic limit.

the ‘cage’ effect. At 14 and 23 GPa, both components are similar in shape to their liquid simple
metal counterparts [35] with both oscillating about zero and with Z l(t) controlling the large-t
behaviour of Z(t). Finally, notice that the development of the deep minimum in the Z(t) is
mainly due to the rapid decay of Z t(t) with increasing pressure.

The longitudinal and transverse components of the power spectrum, Z(ω), are shown in
figure 9. The spectrum at small ω is dominated by Z t(ω), and, consequently, the diffusion
constant D ∝ Z(ω = 0) is completely determined by the transverse component. For 4 and
8 GPa, Z t(ω) decreases monotonically, but at 14 and 23 GPa the value at zero frequency has
dropped and a low-frequency peak has developed. Note that Z t(ω) has no maximum for 4 and
8 GPa, which are the states where Jt(q, ω) shows either no inelastic peaks (4 GPa) or they exist
for a small range (8 GPa). The longitudinal component Z l(ω) always exhibits a peak whose
position increases slightly with increasing pressure. This peak is responsible for the shoulder
in the total Z(ω) for the 4 and 8 GPa states, as well as for the high-frequency peak for the 14
and 23 GPa states.

By a time FT of the Fs(q, t) we obtain its frequency spectrum, Ss(q, ω), which is known
as the self-dynamic structure factor and is related to the incoherent part of the measured INS
cross-section. For all q-values Ss(q, ω) decays monotonically as a function of frequency and it
can be characterized in terms of the peak value, Ss(q, ω = 0), and the HWHM, ω1/2(q). These
parameters are frequently reported normalized with respect to the hydrodynamic (q → 0)
limit, by introducing the dimensionless quantities 	(q) = πq2 DSs(q, ω = 0) and 
(q) =
ω1/2(q)/q2 D, where ω1/2(q)/q2 can be interpreted as an effective q-dependent diffusion
coefficient D(q). For a simple liquid near its TP, 
(q) usually oscillates, whereas in a dense
gas it decreases monotonically from unity at q = 0 to the 1/q-behaviour at large q [24, 25, 29].
Figures 10 and 11 depict the OF-AIMD results for 
(q) and 	(q) for 8 and 14 GPa, as this
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is the pressure range where both magnitudes undergo a substantive change. The obtained

(q) for 14 GPa shows an oscillatory shape with a minimum located at q ≈ qp which can
be traced back to structural features (‘cage’ effect) which somewhat hinder the motion of the
ions and become more effective at q ≈ qp where the wavelength is comparable to the size of
the cage. Conversely, that for 8 GPa resembles the situation of a dense gas where the ‘cage’
effect becomes negligible, leading to a net reduction of the diffusion coefficient [24, 38] and
the corresponding 	(q) stands very close to that of the dense gas.

An additional check on the reliability of these results may be provided by the MC
theory [39, 40] which has already shown its capability to describe to experimental data for

(q) and 	(q) in simple liquid metals [38, 41] at q � qp. Specifically, the MC theory avers
that at low-q values


(q) = 1 + H (δ)q/q∗

	(q) = 1 + G(δ−1)q/q∗ (9)

where q∗ = 16πmρiβ D2, δ = D/(D + η/mρi) and H (δ) and G(δ−1) are given in [38].
The first term in equations (9) stands for the hydrodynamic result whereas the second one

accounts for the coupling of mass diffusion and collective modes. Calculated values of D and η

have been used with equations (9) to obtain the points in figures 10–11. For q � qp we observe
that the MC theory fairly accounts for the OF-AIMD results, with an accuracy comparable to
what has already been achieved in other liquid metals [38]. Consequently, the present results
show the ability of the MC theory to describe the single particle dynamics (and presumably the
collective dynamics too) in liquid systems encompassing a range of bonding and structure such
as that displayed by the compressed l-Si.

4. Conclusions

Several static and dynamic properties of l-Si at four high-pressure thermodynamic states
have been investigated using orbital-free ab initio molecular dynamics combined with a first-
principles local pseudopotential.

The study was motivated by experimental findings [16] of significant structural changes
in l-Si when the pressure is increased from 4 to 23 GPa. The obtained results for the static
structure qualitatively follow those trends unveiled by the experiment, namely the increase of
the intensity and the position of the S(q)’s main peak, along with a progressive vanishing of
its shoulder. Other parameters such as the coordination number, isothermal compressibility,
and the shape of the bond-angle distribution function provide further insight into the changes.
Overall, apart from a contraction with increasing pressure, the static structures of l-Si at the
TP, and at 4 and 8 GPa are very similar. Above 8 GPa the system transforms to a denser more
close-packed structure typical of a liquid simple metal, with most change taking place between
8 and 14 GPa.

The structural changes are also reflected in several dynamical properties. The calculated
dynamic structure factors, S(q, ω), show collective density excitations over similar wavelength
ranges, namely up to q ≈ (3/5)qp, as those found for simple liquid metals at their TPs.
These density excitations are sound waves whose velocity increases with pressure, most steeply
between 8 and 14 GPa. The dispersion relations of the excitations divide into two groups, one
for l-Si at its TP, 4 GPa and 8 GPa and another group for l-Si at 14 and 23 GPa.

The transverse current correlation also show evidence of the structural changes. Below
4 GPa, its frequency spectra lack inelastic peaks, indicating the absence of shear waves, but at
8 GPa clear inelastic peaks are already evident.
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The calculated self-diffusion and shear viscosity transport coefficients are also affected by
the structural changes occurring between 8 and 14 GPa. These transport coefficients cannot
be compared with experiment, but confidence in the calculated values is given by the good
agreement with experimental values and/or other ab initio results for l-Si and its TP.

Finally, we remark that the present results for the static and dynamic properties of
compressed l-Si underscore the capability of the OF-AIMD method to tackle liquid systems
encompassing a range of bonding and structure which evolves from mild remnants of covalent
bonding to a metallic one. Moreover, further improvements in the present ab initio method are
still possible and they necessarily will be focused on developing more accurate electron kinetic
energy functionals and local ionic pseudopotentials.
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